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Abstract
The single-particle properties of a ballistic one-dimensional (1D) conductor are reviewed; the
breakdown in these properties is used to characterize the 0.7 structure, an anomalous but
reproducible feature in the conductance G that is measured at G = 0.7 × 2e2/h.

We show how alternating current heating creates a temperature difference �T across a 1D
wire, allowing thermopower measurements. The thermopower characteristics S(Vg) show
deviations from Cutler–Mott predictions (a single-particle theory) close to the 0.7 structure. The
magnitude of a thermovoltage peak is used to measure the electron temperature, and we have
incorporated a mesoscopic thermometer into a simple thermal circuit that allows us to measure
the thermal conductance of a 1D wire. For the first four 1D subbands the heat carried by
electrons passing through the 1D constriction is proportional to the electrical conductance
G(Vg); this is the first demonstration that the thermal conductance due to electrons is quantized.
In the vicinity of the 0.7 structure the Wiedemann–Franz ratio breaks down, and a plateau at the
quantum of thermal conductance π2k2

BT/3h is observed.

1. Introduction

Ballistic one-dimensional (1D) conduction quantized in units
of G0 = 2e2/h was discovered [1, 2] using split-gates
deposited on the sample surface of a GaAs-based two-
dimensional electron gas (2DEG). Since that time many
devices have been fabricated with different parameters: length
L and width W of the split-gate, depth d and quality (typically
mobility μ) of the 2DEG, etc. Conductance measurements
G(Vg) are the simplest and most revealing experiment to
perform on any newly fabricated sample, where the presence
or absence of conductance plateaus in G(Vg) can quickly
determine the quality of the sample. If the 1D constriction is
free from impurities and there is little subband mixing, clean
conductance plateaus will be measured, and in exceptional
cases more than thirty plateaus have been observed [3].

The 0.7 structure is a reproducible feature observed near
0.7G0 in the conductance characteristics G(Vg) of clean 1D
samples. There is evidence that it has a spin origin and
recent shot-noise measurements [4] show that the 0.7 structure

1 Present address: Hochfeld-Magnetlabor Dresden, Forschungszentrum
Dresden-Rossendorf (FZD), D-01314 Dresden, Germany.

could be interpreted assuming two conducting channels (spin-
up ↑ and spin-down ↓) that have different transmission
probabilities. The 0.7 structure could be evidence [5, 6]
for a spontaneous static spin polarization within the lowest
1D subband, but the plateau-like structure occurs at 0.7G0

rather than at e2/h, and moreover the temperature dependence
suggests that the 0.7 structure is not a ground-state property.
Since its discovery the 0.7 structure has been observed in
clean GaAs wires made by different fabrication routes—there
is however no single mechanism (static [5], dynamic [7],
or otherwise) that can account for all the experimental
observations.

By way of introduction we review some of the single-
particle properties of a 1D ballistic constriction.

(i) In clean short 1D wires there are conductance steps at
integer multiples of 2e2/h, observed as the gate voltage
Vg is swept more negative [1, 2]. As Vg is swept towards
pinch-off (G = 0) both the width of the 1D channel
and the local electron density in the constriction are
reduced. In the Landauer picture each 2e2/h drop in the
conductance corresponds to the depopulation of a spin-
degenerate 1D subband.
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(ii) With increasing temperature, the Fermi functions which
describe the electron energy distribution in the source
and drain become broadened—this in turn smears the
distinction between the plateaus and risers in the
conductance characteristics G(Vg). At high temperatures
when kBT � EN − EN−1, where EN is the energy of the
N th 1D subband, the plateaus disappear and the G(Vg)

traces become featureless.

(iii) The application of a strong magnetic field B‖, applied
parallel to the plane of the 2DEG, lifts the spin degeneracy
of the 1D subbands. The Zeeman energy 2gμB B‖S and
hence the g-factors, can be measured using a source–drain
voltage Vsd. For the higher subbands (N � 1) it is
found [5] that g ≈ 0.4, close to the bulk GaAs value.

(iv) The application of a DC source–drain voltage Vsd, on top
of the usual AC measuring voltage, opens up a window
of energy eVsd about the Fermi energy. Non-equilibrium
studies (Vsd �= 0) for conductances G > 2e2/h show that
half-plateaus result from the differing occupations of the
1D subbands in the two transport directions, all of which
can be understood within the single-particle picture [8].
The DC source–drain voltage Vsd can be used to follow
the energy subbands as a function of gate voltage Vg. The
transconductance dG/dVg can be plotted as a function
of both Vg and Vsd, yielding diamond-shaped grey scale
plots; these show that the 1D subbands move linearly with
gate voltage.

The counterparts to the above properties are listed below
for the 0.7 structure:

(i) There is a reproducible structure in the conductance
around 0.7×2e2/h—the quantization is not as accurate as
that of the single-particle steps at multiples of 2e2h. What
is clear is that the 0.7 structure occurs between e2/h and
2e2/h, which in the Landauer picture means that there are
between one and two conducting spin-split 1D subbands
contributing to the conductance.

(ii) Unusually the 0.7 structure becomes stronger with
temperature [5], a result most clearly demonstrated [9] in
etched samples which have strong lateral confinement.

(iii) With the application of a strong parallel magnetic
field, B‖, the 0.7 structure shifts down in conductance,
eventually evolving into the spin-split plateau at e2/h.
Using equilibrium measurements (Vsd = 0) the gate
voltage splitting of the dG/dVg peaks give an indication
of the energy splitting. By following this energy splitting
with increasing magnetic field, see figure 1, the 0.7
structure at low fields evolves into the usual spin-split
subbands at high fields. In addition the in-plane g-factors
measured in the last subbands are found to be enhanced [5]
over the values measured when N � 1.

(iv) Upon application of a source–drain voltage Vsd the
features in the grey scale plots associated with the spin-
up and spin-down 1D subbands show non-linearities and
abrupt changes as they are populated or depopulated [10].

Energy

||Parallel Field B

Figure 1. Schematic of the energy splitting between the spin-up (↑)
and spin-down (↓) energy levels within the last (N = 1) conducting
subband, as a function of the applied parallel magnetic field B‖. In a
strong B‖ field the ↑ and ↓ subbands are separated by the Zeeman
energy EZ and the G(Vg) trace exhibits plateaus at e2/h and 2e2/h.
As the magnetic field is reduced the Zeeman splitting decreases
linearly; however in the limit of zero magnetic field there is a finite
offset. This result suggests that the Zeeman energy has the form
EZ = 2gμB B‖S + C , where the constant C could be interpreted [5]
as evidence for zero-field spin-splitting; unfortunately for this
interpretation the conductance exhibits a plateau at
0.7 × (2e2/h) = 1.4(e2/h) rather than at e2/h. The shaded area
shows schematically the region where the single-particle properties
breakdown, extending out to a couple of Tesla in B‖.

2. Current heating and thermopower measurements

Not long after the discovery of ballistic conduction,
Molenkamp and co-workers [11] performed thermopower
measurements, S(Vg), as well as preliminary thermal
conductance κ(Vg) measurements. The early measurements
were performed at gate voltages well away from the last
conducting subband, and were in agreement with theory. The
theory for describing these transport coefficients was put on a
firm footing [12] within the Landauer–Büttiker theory.

In this paper we review our recent thermal measurements,
highlighting the deviations from single-particle behaviour
which occur at and around the 0.7 structure. Thermal
measurements are in general more difficult to carry out
than electrical measurements, even more so when performed
close to pinch-off (G → 0). For example, both spurious
and nonlinear thermovoltages can be created by the rising
capacitance of the split-gate, and the poor definition of the
electrical earth on the heated side of the sample (necessary to
sink IH).

Thermal measurements require an electron temperature
difference �T , from one side of the 1D wire to the other,
between the source and drain. Fortunately this can be readily
achieved by passing a current IH between the Ohmic contacts
on one side of the sample; the resulting Joule heating (I 2

H R)
raises the electron temperature on that side, and because of the
weak coupling between the electrons and the lattice, the lattice
temperature TL remains unchanged throughout the sample.
The electron temperature on the unheated side of the 1D
channel remains at the lattice (bath) temperature TL, whereas
the electrons on the heated side have a temperature Te; the
temperature difference across the sample is �T = Te−TL. The
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Figure 2. Upper: raw thermovoltage traces Vth(Vg) of a ballistic 1D
wire at T = 0.3 K, obtained using heating currents of IH = 0.31,
0.44, 0.63 and 0.88 μA. Lower: the scaled thermovoltage, obtained
by dividing each raw Vth trace by its value at Vg = −1.7 V. The
scaled data all collapses onto a single curve, demonstrating that the
Vth measurements are linear.

(This figure is in colour only in the electronic version)

electron–electron scattering rate is much faster than all other
scattering rates, so all of the electrons on the heated side of the
sample will equilibrate at a local temperature TH = TL + �T .
Either AC or DC heating currents IH can be used, though better
signal-to-noise measurements can be achieved using lock-in
techniques to measure a thermovoltage Vth at frequency 2 f ,
in response to electron heating by a current IH at frequency f .

The simplest measurement that can be performed
using current heating is that of the thermopower, S =
−(Vth/�T )I=0, where the applied temperature difference �T
induces a thermovoltage Vth across the 1D wire. In linear
response S is related to the conductance G = (δ I/δV )δT =0

through the relation [13]

S = −π2k2
BT

3e

1

G

∂G

∂μ
, (1)

where μ is the chemical potential.
Figure 2 shows typical traces of the raw thermovoltage

Vth and conductance G for a 1D constriction, where the traces
are obtained at different heating currents IH. There is a peak
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Figure 3. Simultaneous thermopower S and conductance G
measurements at T = 0.3 K of a 1D constriction close to
pinch-off [14]. According to the Cutler–Mott relation (equation (1))
a plateau in G should be accompanied by a zero in S—this prediction
holds for the plateaus at N × 2e2/h for N = 1, 2, 3, and 4, but
breaks down on the 0.7 structure at Vg = −2.4 V.

in S(Vg) (and also in Vth(Vg)) where there is a riser (or step)
in the conductance G(Vg), all in agreement with equation (1).
The upper part of figure 2 shows the raw thermovoltage traces
Vth(Vg) at T = 0.3 K, obtained using the heating currents
IH = 0.31, 0.44, 0.63 and 0.88 μA. Clearly as the heating
current increases, the electrons on one side of the sample are
heated to a temperature �T above the lattice temperature TL,
and the resulting thermopower peaks become stronger. The
lower part of figure 2 shows the scaled thermovoltage, obtained
by dividing each Vth trace by its value at Vg = −1.7 V; the
scaled data all collapses onto a single curve, demonstrating that
the Vth measurements are linear. The height of a thermovoltage
peak can be used as an electron thermometer, as will be
demonstrated in the thermal conductance measurements in
section 3. The electron thermometer generates a thermovoltage
which is of the order of a few μV or less, for a �T of 100 mK.

Equation (1) was derived for a non-interacting, degenerate
electron gas and has been reformulated [15–17] for a
mesoscopic device connected to Fermi function reservoirs; it
is found that it remains essentially unchanged. We note that
a careful analytical and numerical study [18] shows that for
non-interacting electrons it is alright to use a finite temperature
(rather than a zero temperature) conductance in equation (1).
One possible approach would be to use this equation to identify
where single-particle theory breaks down. Figure 3 shows
simultaneous thermopower S and conductance G traces of a
different 1D wire close to pinch-off at T = 0.3 K, which
shows a particularly well developed 0.7 structure that is almost
a plateau. According to the Cutler–Mott relation (equation (1))
a plateau in the conductance should be accompanied by a zero
in the thermopower—such a prediction holds for the plateaus
at N × 2e2/h for N = 1, 2, 3, and 4, but breaks down
for the 0.7 structure at Vg = −2.4 V. Reference [14] shows
that in a strong B‖ field the 0.7 structure in G shifts down
to e2/h and the thermopower S develops a zero, consistent
with a return to single-particle behaviour at high fields (as
shown in figure 1). It is not theoretically known why there
is an enhanced thermopower on the 0.7 structure. One could
speculate that additional degrees of freedom, for example,
magnetic excitations could make a contribution to S, but as
yet no firm theories have been put forward.
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Figure 4. Schematic of the device and set-up for thermal
conductance κ(Vg) measurements. Electrons can only pass through
the constrictions labelled A, B and C; the much narrower channels
are pinched-off. Electrons in the heating channel are heated to
TH = TL + �T by a current IH; hot electrons pass through the
sample constriction (A) into the box, where the temperature
Tbox = TL + δT is determined by the thermovoltage V box

th generated
across constrictions B and C.

3. Thermal conductance measurements

In this section we introduce a device in which we can directly
compare thermal κ(Vg) and electrical G(Vg) conductance
measurements. Such a comparison is important because if
both charge and energy are transported by electrons, there is a
universal relation between κ and G known as the Wiedemann–
Franz (WF) relation

κ

GT
= π2k2

B

3e2
= L0, (2)

where L0 is the Lorenz number and T is the temperature.
Deviations from the WF ratio have been used to investigate
non-Fermi liquid behaviour in a variety of condensed matter
systems. Equation (2) predicts that the observation of
conductance plateaus (in units of G0) should be matched by
steps in the thermal conductance, quantized in units of L0T ×
G0 = (1.89 × 10−12 W K−2)T .

To measure the thermal conductance we modify previous
devices [11] by introducing a closed electron box whose tem-
perature Tbox is measured by the electron thermometer [19, 20]
described in section 2. Figure 4 shows a schematic of the
6 μm × 10 μm box, around which there are three split-gates,
each with a gap that is 0.5 μm long and 0.65 μm wide. An AC
current IH heats electrons in the heating channel to a tempera-
ture TH = TL + �T . The electrons in the closed box have a
well defined temperature, and for a given IH the thermovoltage
generated is much larger than in more open structures [11].

Hot electrons in the heating channel can enter the box
through constriction A (called the sample constriction) and can
leave the box via constrictions B and C. In steady-state the heat

flow in and out of the box is equal such that

κA(TH − Tbox) = (κB + κC)(Tbox − TL), (3)

where κA, κB and κC are the thermal conductances of the three
constrictions. The increase in the box temperature Tbox =
TL + δT is given by

δT = κA

κA + κB + κC
× �T . (4)

Constrictions B and C (defined as the thermometer and
reference constrictions) are used to measure Tbox. The
temperature rise δT within the box generates a thermovoltage
in both B and C, but constriction C is put on a conductance
plateau so its contribution (see equation (1)) is zero [20].
Therefore the measured thermovoltage is solely due to
constriction B

V box
th = SB(Tbox − TL) = SB δT . (5)

The thermopower SB is proportional to the average of
the temperatures on either side of constriction B, allowing
equation (5) to be rewritten as

V box
th = cB(T 2

box − T 2
L ), (6)

where the calibration constant, cB ≈ 15 μV K−2, is determined
by DC source–drain voltage measurements of the subband
spacing [20]. When constriction A is not defined, the electron
thermometer is in direct contact with the heating channel, and
the thermovoltage V H

th at this gate voltage is a measure of TH

through the relation

V H
th = cB(T 2

H − T 2
L ). (7)

Equations (4) and (5) show that measurements of V box
th (Vg),

and hence δT , lead directly to the thermal conductance κA(Vg),
provided we know �T and make certain assumptions about κB

and κC.
Figure 5 shows the raw thermovoltage V box

th (Vg) traces
taken as the gate voltage Vg of constriction A is swept, while
constrictions B and C are set at GB = 1.5G0 and GC = G0,
respectively. The steps in V box

th are aligned with those in the
conductance GA (top trace), confirming that the structure in
V box

th is due to the 1D subbands. Traces (a)–(d) were obtained
with heating currents IH = 0.2–1 μA, and the corresponding
temperature rise in the heating channel �T = 15–100 mK
were calculated using equation (6).

The thermovoltage V box
th shown in figure 5 follows the

shape of the conductance characteristics GA(Vg); as well as
the steps, the definition of constriction A at Vg ≈ 0.3 V can
be seen in all the traces. At Vg = 0.5 V both constriction A
and the box are not defined, and the electron thermometer is in
direct contact with the heating channel; we define V box

th (Vg =
0.5 V) = V H

th , and TH is obtained using equation (7). There
are also energy losses from hot electrons to the lattice via
the electron–phonon interaction (∝T 5)—we have previously
measured [20] these and they can be neglected for T < 0.5 K.
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Figure 5. The thermovoltage V box
th of the electron box together with

the conductance GA, measured at a lattice temperature TL = 0.27 K
using heating currents of (a) IH = 0.2 μA, (b) 0.3 μA, (c) 0.5 μA,
and (d) 1 μA. The corresponding temperature rises were estimated to
be �T = 15, 30, 55, and 100 mK, respectively. The thermovoltage
approximately scales with I 2

H up to IH = 1 μA [21].

It is not possible to measure κA, κB and κC independently,
and so we assume that the thermal conductance of each
constriction is proportional to its electrical conductance,

κ j = α j G j T , j = A, B or C (8)

where α j is a constant and T is the average of the temperatures
on either side of the j th constriction. Assuming that the WF
ratio is the same for all three constrictions, αA = αB = αC =
α, equation (3) can be written as

G̃A = (GB + GC)
T 2

box − T 2
L

T 2
H − T 2

box

= (GB + GC)
V box

th

V H
th − V box

th

, (9)

where V box
th (Vg) is measured as a function of the gate voltage

on A, and V H
th is the thermovoltage when constriction A is

not defined. If GB and GC are fixed at known conductances
(usually constriction B is on a riser and C is on a plateau)
the quantities V H

th and V box
th on the right side of equation (9)

can be measured. The left side of equation (9) is written
as G̃A, which is the expected conductance of constriction
A as derived from thermal measurements. G̃A(Vg) has the
dimensions of conductance, and will be compared to the
electrical conductance GA(Vg).

Figure 6(a) shows traces of G̃A (offset horizontally)
compared to the electrical conductance GA, where the thermal
data is taken with constriction B acting as the electron
thermometer (GB = 1.5G0) and the reference constriction C
is set at GC = 3G0 (trace i), 4G0 (trace ii) and 5G0 (trace
iii). The increase in the box temperature, δT , as determined
by equation (4) is different for each of the three traces, yet
the same thermal conductance behaviour for constriction A is
obtained, showing the validity of the technique. In comparison
to the electrical conductance GA, which shows conductance
plateaus at multiples of G0 = 2e2/h, there are three plateaus in
G̃A which occur (to within 10–15%) at similar multiples of G0.
The conductance characteristics GA(Vg) in figure 6(a) show a
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Figure 6. (a) The thermally derived conductance G̃A(Vg) and
electrical conductance GA(Vg) of constriction A at TL = 0.27 K [21].
Left solid line: conductance GA(Vg). Measurements of G̃A(Vg) were
obtained with IH = 1 μA, GB = 1.5G0 and GC = 3G0 (trace i),
GC = 4G0 (trace ii) and GC = 5G0 (trace iii). For clarity successive
traces have been shifted by 0.3 V to the right. (b) The thermal and
electrical conductances close to pinch-off, showing that at the gate
voltage corresponding to the 0.7 structure, G̃A exhibits a
half-plateau. Far left traces: GA(Vg) at TL = 0.3 K (solid) and
TL = 1.2 K (dashed). Traces A–E: G̃A(Vg) at TL = 0.27 K for
heating currents IH = 0.2, 0.4, 1, 2, and 3 μA; the corresponding
�T are calculated to be 26, 66, 133, 193, and 234 mK. The G̃A(Vg)
traces A and B were obtained with GB = 1.5G0 and GC = 3G0;
traces C–E were obtained with GB = 1.5G0 and GC = 2G0.

0.7 structure; there is, however, no corresponding 0.7 structure
in the G̃A(Vg) traces.

Figure 6(b) shows the conductances closer to pinch-off,
where for clarity the G̃A traces have been shifted to the
right. The thermal conductances were measured at the lattice
temperature TL = 0.27 K for different heating currents. At the
lowest IH (trace A) there is a discernible half-plateau at e2/h
in G̃A, which corresponds in gate voltage to the 0.7 structure in
GA. With increasing IH, traces B–E show less noise in G̃A, and
the half-plateau in the thermal conductance is better resolved.
This unexpected half-plateau in the thermal conductance was
measured both in the linear regime, (TH − Tbox)/TL ∼ 0.1,
but also persists into the non-linear regime where (TH −
Tbox)/TL ∼ 0.7. To get some idea about the sensitivity of our
thermal measurements, the heat flow Q̇ through constriction
A when the half-plateau in the thermal conductance is just
distinguishable is Q̇ = κ(TH − Tbox) ≈ 6 fW, more than two
orders of magnitude smaller than previous measurements [11].

3.1. Discussion

In the single-particle picture a breakdown of the WF relation
is possible [22] if the transmission probability t (E) of the
constriction varies rapidly compared to the thermal energy
difference across the constriction; however calculations for

5
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the realistic saddle-point potential model of the constriction
show [12] that there is no breakdown. First we discuss
our thermal results for high conductances, G > G0,
where single-particle theory prevails. Figure 6(a) shows the
measured behaviour with no adjustable parameters—there is
an alignment of the first three conductance plateaus (GA =
G0, 2G0, and 3G0) with those in G̃A, where the latter
quantity is calculated from equation (9) assuming that all three
constrictions behave similarly. The observed alignment cannot
be interpreted as an absolute confirmation of the WF relation,
because it is not known whether the constant of proportionality
α (see equation (8)) is equal to the Lorenz number L0. There
is, however, no theoretical reason why the WF relation should
not be obeyed for plateaus G > G0.

It has been theoretically shown that in 1D the
quantization of the thermal conductance is universal for
thermal carriers that obey boson [23], fermion or anyon
statistics [24]. Measurements have demonstrated this
universality for phonons [25] and photons; [26] our thermal
conductance measurements demonstrate this universality for
electrons.

In long clean 1D wires Luttinger liquid behaviour is
expected, and the resulting spin–charge separation causes
the electrical and thermal conductances to behave differently,
giving a breakdown of the WF relation and clearly
demonstrating non-Fermi liquid behaviour [27]. In shorter
1D constrictions there is no accepted microscopic mechanism
for the 0.7 structure, and we have found only one prediction
for the thermal conductance. Assuming there is a weakly
bound electron in the constriction Rejec et al [28] calculate that
the normalized thermal conductance κ/(L0T ) shows structure
at G0/4 and 3G0/4, and deviations from the WF law are
expected at elevated temperatures. Our results do not show
these fractional structures, but instead shows a feature at
κ/(L0T ) = G0/2. In the Landauer–Büttiker formalism the
thermal conductance is calculated [12] to be

κ = T G0(kB/e)2
∫ ∞

0
t (E)∂ f/∂ Eε2dE, (10)

where ε = (E − EF)/kBT , f (ε) = [exp(ε)+1]−1 is the Fermi
function, and EF is the Fermi energy. In a phenomenological
model [6] assuming a density dependent spin-gap, calculations
of the electrical conductance G = −G0

∫ ∞
0 t (E)∂ f/∂ E dE

show some similarity to G(Vg) measurements of the 0.7
structure. We find that calculations using such a model gives a
structure at κ = L0T × 0.7G0; that is, the Wiedemann–Franz
relation is obeyed and it is not possible to obtain simultaneous
plateaus at G = 0.7G0 and κ = L0T × (G0/2).

A plateau at e2/h = G0/2 has been measured in
the electrical conductance of low density wires [29], longer
wires [6], and symmetric wires [30], but in all cases it is
not known whether there is a full spin polarization or some
other state. A mechanism for an e2/h plateau in G(Vg) has
been put forward by Matveev [31, 32], where the 1D wire
is modelled as a Wigner crystal in which there are separate
charge and spin degrees of freedom. The electrical resistance
has contributions from both, with the spin contribution being
temperature dependent and going to zero when T → 0.

4. Summary

We have described briefly how thermal measurements can
be performed on 1D devices. Though these measurements
are technically difficult, they do reveal deviations from
single-particle behaviour at the 0.7 structure that support
and extend the more straight forward electrical conductance
characteristics. There is now a large collection of
measurements on the 0.7 structure—there is a need that all
this experimental evidence be considered in future theoretical
models.

In particular we have presented measurements of the
thermal conductance characteristics κ(Vg). Over most of
the gate voltage of a 1D wire the thermal conductance κ

follows the electrical conductance G in accordance with
equation (2). However, in the vicinity of the 0.7 structure
there is a breakdown of the Wiedemann–Franz relation, giving
an unexpected plateau in thermal conductance at L0T ×
(G0/2). The techniques described here for measuring the
thermal conductance could also be applied to quantum dots
and long wires. It would also be interesting to perform κ(Vg)

measurements in a strong parallel magnetic field B‖.
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[28] Rejec T, Ramšak A and Jefferson J H 2002 Phys. Rev. B

65 235301
[29] Thomas K J, Nicholls J T, Pepper M, Tribe W R, Simmons M Y

and Ritchie D A 2000 Phys. Rev. B 61 R13365
[30] Crook R, Prance J, Thomas K J, Chorley S J, Farrer I,

Ritchie D A, Pepper M and Smith C G 2006 Science
312 1359–62

[31] Matveev K A 2004 Phys. Rev. Lett. 92 106801
[32] Matveev K A 2004 Phys. Rev. B 70 245319

7

http://dx.doi.org/10.1103/PhysRevB.72.193305
http://dx.doi.org/10.1103/PhysRevLett.68.3765
http://dx.doi.org/10.1088/0268-1242/7/3B/052
http://dx.doi.org/10.1103/PhysRevB.62.R16275
http://dx.doi.org/10.1103/PhysRevB.33.551
http://dx.doi.org/10.1088/0953-8984/2/22/008
http://dx.doi.org/10.1103/PhysRevB.44.9096
http://dx.doi.org/10.1088/0953-8984/17/25/014
http://dx.doi.org/10.1016/S1386-9477(99)00102-2
http://dx.doi.org/10.1103/PhysRevLett.81.3491
http://dx.doi.org/10.1103/PhysRevLett.97.056601
http://dx.doi.org/10.1088/0953-8984/16/21/015
http://dx.doi.org/10.1088/0305-4470/16/10/012
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1038/nature05276
http://dx.doi.org/10.1103/PhysRevLett.80.5611
http://dx.doi.org/10.1103/PhysRevB.65.235301
http://dx.doi.org/10.1103/PhysRevB.61.R13365
http://dx.doi.org/10.1126/science.1126445
http://dx.doi.org/10.1103/PhysRevLett.92.106801
http://dx.doi.org/10.1103/PhysRevB.70.245319

	1. Introduction
	2. Current heating and thermopower measurements
	3. Thermal conductance measurements
	3.1. Discussion

	4. Summary
	Acknowledgments
	References

